Definition 1 (A relation): Let X and Y be sets.

A relation R from X to Y is a subset of $X \times Y$.

Example 1. Let $A = \{1, 2\}$, $B = \{a, b, c\}$. List 3 relations from A to B. How many possible relations are there from A to B?

Definition 2. Let R be a relation from X to Y.

The **domain of** R is

$$dom(R) = \{ x \in X : (x, y) \in R \text{ for some } y \in Y \}.$$

The range of R is

 $range(R) = \{ y \in Y : (x, y) \in R \text{ for some } x \in X \}.$

Notation: If $(x, y) \in R$, we write xRy.

Definition 3 (*Inverse Relation*): Let R be a relation from X to Y. The **inverse relation** of R is

$$R^{-1} = \{(y, x) : (x, y) \in R\}.$$

Example 2. Find R^{-1} for the relations you constructed above.

- What is the domain of R^{-1} ?
- What is the range of R^{-1} ?

Properties of Relations

Definition 4. A relation from a set X to X is **reflexive** if $xRx \forall x \in X$.

Give an example of a relation which is reflexive and a relation which is not reflexive.

Examples. Determine if the following relations are reflexive or not.

- (1) The relation S is defined on \mathbb{R} by aSb if a < b.
- (2) The relation \sim is defined on \mathbb{R} by $x \sim y$ if $x \mid y$.
- (3) The relation Q is defined on \mathbb{R} by $(a,b) \in Q$ if $a \leq b$.

Definition 5. A relation from a set X to X is symmetric if whenever xRy, then yRx. Give an example of a relation which is symmetric and a relation which is not symmetric.

Examples. Determine if the following relations are symmetric or not.

- (1) The relation S is defined on \mathbb{R} by aSb if a < b.
- (2) The relation \sim is defined on \mathbb{R} by $x \sim y$ if $x \mid y$.
- (3) The relation P is defined on \mathbb{R} by $(a,b) \in P$ if $\frac{a}{b} \in \mathbb{Q}$.

Definition 6. A relation from a set X to X is **transitive** if whenever xRy and yRz, then xRz.

Give an example of a relation which is transitive and a relation which is not transitive.

Examples. Determine if the following relations are transitive or not.

- (1) The relation S is defined on \mathbb{R} by aSb if a < b.
- (2) The relation \sim is defined on \mathbb{R} by $x \sim y$ if $x \mid y$.
- (3) The relation M is defined on \mathbb{R} by $(a, b) \in Q$ if |a b| < 1.

Equivalence Relations

Definition 7 (An equivalence relation): A relation from a set X to X is an equivalence relation if it is reflexive, symmetric and transitive.

Definition 8. For an equivalence relation R defined on a set X and for $a \in X$, the set

$$[a] = \{x \in X : xRa\}$$

consisting of all elements x related to a is called the **equivalence class** of a.

- Can [a] be an empty set?
- Find the equivalence classes determined by

$$R = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$$

Examples

- (a) Are the following relations equivalence relations?
- (b) If not, explain why not.
- (c) If they are, prove that they are and
- (d) determine the distinct equivalence classes.
- 1. The relation \simeq is defined on the set $H = \{5k : k \in \mathbb{Z}\}$ by $a \simeq b$ if $a b \in H$.

2. The relation P is defined on $\mathbb{R} \times \mathbb{R}$ by (a, b)R(c, d) if $|a - c| \leq 3$.

3. The relation ~ is defined on $\mathbb{R} \times \mathbb{R}$ by $(a, b) \sim (c, d)$ if $a^2 - b = c^2 - d$.